Las funciones trigonométricas surgen de una forma natural al estudiar el triángulo rectángulo y observar que las razones (cocientes) entre las longitudes de dos cualesquiera de sus lados sólo dependen del valor de los ángulos del triángulo. Pero vayamos por partes.
Primero consideraremos triángulos rectángulos ABC, rectángulos en A, con <B = 60º y <C = 30º. Todos los triángulos que dibujemos con estos ángulos son semejantes, y, por ello, las medidas de sus lados proporcionales:
Primero consideraremos triángulos rectángulos ABC, rectángulos en A, con <B = 60º y <C = 30º. Todos los triángulos que dibujemos con estos ángulos son semejantes, y, por ello, las medidas de sus lados proporcionales:
Esto quiere decir que si calculamos en el primer triángulo AC/BC obtendremos el mismo resultado que si calculamos en el segundo triángulo el cociente A'C'/B'C'. Se supone que esto lo conoces de cursos anteriores, pero si eres desconfiado y el razonamiento no te convence del todo, tienes algunas posibilidades:
Una consiste en dibujar con mucho cuidado triángulos distintos con ángulos 90º, 60º y 30º y calcular los resultados de las divisiones anteriores (el cateto opuesto al ángulo de 60º dividido por la longitud de la hipotenusa) para así comprobar que siempre se obtiene el mismo resultado (aproximadamente 0.87).
Si realizamos las mismas divisiones en triángulos rectángulos con ángulos distintos a los anteriores veremos que sucede lo mismo: al dividir la longitud del cateto opuesto al ángulo de 40º entre la longitud de la hipotenusa se obtiene siempre el mismo resultado (aproximadamente 0.64).
A ese valor constante que se obtiene al dividir la longitud del cateto opuesto al ángulo de 40º entre la longitud de la hipotenusa se le llama seno de 40º, y se escribe sen(40º) = 0.64.
(Estas explicaciones se tratarán con más detalle en clase y a partir de aquí definiremos las razones trigonométricas de ángulos agudos de triángulos rectángulos).
Una consiste en dibujar con mucho cuidado triángulos distintos con ángulos 90º, 60º y 30º y calcular los resultados de las divisiones anteriores (el cateto opuesto al ángulo de 60º dividido por la longitud de la hipotenusa) para así comprobar que siempre se obtiene el mismo resultado (aproximadamente 0.87).
Si realizamos las mismas divisiones en triángulos rectángulos con ángulos distintos a los anteriores veremos que sucede lo mismo: al dividir la longitud del cateto opuesto al ángulo de 40º entre la longitud de la hipotenusa se obtiene siempre el mismo resultado (aproximadamente 0.64).
A ese valor constante que se obtiene al dividir la longitud del cateto opuesto al ángulo de 40º entre la longitud de la hipotenusa se le llama seno de 40º, y se escribe sen(40º) = 0.64.
(Estas explicaciones se tratarán con más detalle en clase y a partir de aquí definiremos las razones trigonométricas de ángulos agudos de triángulos rectángulos).
No hay comentarios:
Publicar un comentario